2 resultados para Análise molecular

em Universidade Federal de Uberlândia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The production of KPC (Klebsiella pneumoniae carbapenemase) has become an important mechanism of carbapenem-resistance among Enterobacteriaceae strains. In Brazil, KPC is already widespread and its incidence has increased significantly, reducing treatment options. The “perfect storm” combination of the absence of new drug developmentand the emergence of multidrug-resistant strains resulted in the need for the use of older drugs, with greater toxicity, such as polymyxins. Aims: To determine the occurrence of carbapenemase-producing strains in carbapenem-resistant Enterobacteriaceae isolated from patients with nosocomial infection/colonization during September/2014 to August/2015, to determine the risk factors associated with 30-day- mortality and the impact of inappropriate therapy. Materials and Methods: We performed a case control study to assess the risk factors (comorbidities, invasive procedures and inappropriate antimicrobial therapy) associated with 30-day-mortality, considering the first episode of infection in 111 patients. The resistance genes blaKPC, blaIMP, blaVIM and blaNDM-1 were detected by polymerase chain reaction technique. Molecular typing of the strains involved in the outbreak was performed by pulsed field gel electrophoresis technique. The polymyxin resistance was confirmed by the microdilution broth method. Results: 188 episodes of carbapenem-resistant Enterobacteriaceae infections/colonizations were detected; of these, 122 strains were recovered from the hospital laboratory. The presence of blaKPC gene were confirmed in the majority (74.59%) of these isolates. It was not found the presence of blaIMP , blaVIM and blaNDM-1 genes. K. pneumoniae was the most frequent microorganism (77,13%), primarily responsible for urinary tract infections (21,38%) and infections from patients of the Intensive Care Unit (ICU) (61,38%). Multivariate statistical analysis showed as predictors independently associated with mortality: dialysis and bloodstream infection. The Kaplan-Meier curve showed a lower probability of survival in the group of patients receiving antibiotic therapy inappropriately. Antimicrobial use in adult ICU varied during the study period, but positive correlation between increased incidence of strains and the consumption was not observed. In May and July 2015, the occurrence rates of carbapenem-resistant Enterobacteriaceae KPC-producing per 1000 patient-days were higher than the control limit established, confirming two outbreaks, the first caused by colistin-susceptible KPC-producing K. pneumoniae isolates, with a polyclonal profile and the second by a dominant clone of colistin-resistant (≥ 32 μg/mL) KPC-producing K. pneumoniae. The cross transmission between patients became clear by the temporal and spatial relationships observed in the second outbreak, since some patients occupied the same bed, showing problems in hand hygiene adherence among healthcare workers and inadequate terminal disinfection of environment. The outbreak was contained when the ICU was closed to new admissions. Conclusions: The study showed an endemicity of K. pneumoniae KPC-producing in adult ICU, progressing to an epidemic monoclonal expansion, resulted by a very high antibiotic consumption of carbapenems and polymyxins and facilitated by failures in control measures the unit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, our goal was develop and describe a molecular model of the enzyme-inhibiting interaction which can be used for an optimized projection of a Microscope Force Atomic nanobiosensor to detect pesticides molecules, used in agriculture, to evaluate its accordance with limit levels stipulated in valid legislation for its use. The studied herbicide (imazaquin) is a typical member of imidazolinone family and is an inhibitor of the enzymatic activity of Acetohydroxiacid Synthase (AHAS) enzyme that is responsible for the first step of pathway for the synthesis of side-chains in amino acids. The analysis of this enzyme property in the presence of its cofactors was made to obtain structural information and charge distribution of the molecular surface to evaluate its capacity of became immobilized on the Microscopy Atomic Force tip. The computational simulation of the system, using Molecular Dynamics, was possible with the force-field parameters for the cofactor and the herbicides obtained by the online tool SwissParam and it was implemented in force-field CHARMM27, used by software GROMACS; then appropriated simulations were made to validate the new parameters. The molecular orientation of the AHAS was defined based on electrostatic map and the availability of the herbicide in the active site. Steered Molecular Dynamics (SMD) Simulations, followed by quantum mechanics calculations for more representative frames, according to the sequential QM/MM methodology, in a specific direction of extraction of the herbicide from the active site. Therefore, external harmonic forces were applied with similar force constants of AFM cantilever for to simulate herbicide detection experiments by the proposed nanobiosensor. Force value of 1391 pN and binding energy of -14048.52 kJ mol-1 were calculated.